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ABSTRACT

Human-centric computer vision tasks often benefit from each
other. In this paper, we propose a novel framework called
Human Carving to explore the relationships between human
parsing and multi-view 3D human reconstruction, which is
the first method to consider the two related tasks. It consists
of three modules: 1) Pose-aware Multi-view Human Parsing,
2) Semantic Visual Hull Carving and 3) Hierarchical Human
Model Fitting. Taking the sparse multi-view images as input,
the framework automatically generates a Part-Aware Visual
Hull (PAVH) of human body parts and then estimates the hu-
man shape and pose simultaneously. Experimental results on
real scenes demonstrate the effectiveness of our framework.

Index Terms— Human Parsing, 3D Human Reconstruc-
tion, Multi-view Geometry, Visual Hull, SMPL Model

1. INTRODUCTION

Imaged-based Multi-view 3D Human Reconstruction is a
challenging task, which requires estimating the human shape
and pose simultaneously. Most of the existing methods are
based on 2D human pose and silhouette information [1, 2, 3],
while ignoring the semantic and detailed edge information of
human body parts. In this paper, we explore the function of
human parsing in the reconstruction task and propose the first
parsing-based method to estimate 3D human shape and pose.

Human parsing, also known as human body part segmen-
tation, is fundamental to many human-centric computer vi-
sion tasks, the goal of which is to segment the pixels of differ-
ent human body parts given an RGB image. Recently, human
parsing has been promoted by efficient CNN-based seman-
tic segmentation approaches[4, 5]. Auxiliary tasks including
edge detection [6, 7] and human pose estimation [8, 9] have
improved the accuracy and generalizability of human parsing.

The relationships between human parsing and multi-view
3D human reconstruction can be summarized as follows: (1)
Silhouette Relationship. The pixels of 2D human parsing
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result and the voxels of 3D human reconstruction result share
the same silhouette information in the specific viewpoint.
And such relationship between pixels and voxels can be
bridged by multi-view geometry methods such as visual hull
[10]. (2) Semantic Relationship. Human parsing provides
a part-specific correspondence between image pixels and hu-
man surface [11], which can be captured by parametric human
models, e.g. the Skinned Multi-Person Linear (SMPL) model
[12]. The SMPL model is a deformable template mesh under
the control of shape and pose parameters. And each vertice of
the mesh corresponds to a specific body part. Based on such
correspondence, the semantic relationship between human
parsing and 3D human body can be built consequentially. (3)
Structure Relationship. The result of human parsing also
provides the rough locations of body joints because of the
prior of the kinematic tree [13] of human body. And this tree
structure is also the basic mechanism of the SMPL model.
Utilizing the silhouette, semantic and structure information
of human parsing, we estimate the shape and pose parameters
of the SMPL model, reconstructing the naked human body.

Inspired by the three relationships, we propose a novel
framework called Human Carving to bridge the gap between
human parsing and multi-view 3D human reconstruction, the
name of which is borrowed from the space carving theory
[14]. As shown in Fig. 1, our framework is composed of
three modules: 1) Pose-aware Multi-view Human Parsing. It
provides the human body part segmentation of each view. 2)
Semantic Visual Hull Carving. A part-aware visual hull is
carved using human parsing results. 3) Hierarchical Human
Model Fitting. The SMPL model is aligned with the part-
aware visual hull as output. Our method is evaluated on a
real scene multi-view human dataset [15]. The quantitative
and qualitative results demonstrate the effectiveness of our
method compared to the previous methods.

To summarize, our contributions are three fold. (1) We
propose to utilize human parsing in multi-view 3D human
reconstruction, which is novel to solve this problem. (2)
We extend the concept of visual hull to a part-aware seman-
tic model, enhancing its relevance to the parametric human
model, e.g. SMPL. (3) We design a four-stage optimization
approach to estimate the shape and pose parameters of the
SMPL model hierarchically and efficiently.
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Fig. 1. The proposed framework. Firstly, we obtain the body part segmentations of the multi-view input images using a multi-
view human parsing network trained by a pose-aware complementary learning system. Secondly, the body part segmentations
are fed into the semantic visual hull carving module, producing a Part-Aware Visual Hull (PAVH). Thirdly, the parametric
human body model, SMPL, is used to fit the constructed PAVH in a hierarchical way.

2. OUR FRAMEWORK

2.1. Pose-aware Multi-view Human Parsing

Following the idea of [16], we build a multi-view human pars-
ing neural network to segment the human body part for multi-
view input images, which is trained under the supervision of
both human 2D pose and body part segmentation.

1) Multi-view Human Parsing Network. For the in-
put images Ii ∈ RH×W×3, i = 1, · · · , Nv of Nv views,
the ResNet101 [17] backbone with pyramid connections
[18], denoted as r, is firstly used to extract the feature
maps Fi = r(Ii). Then a fully convolutional network,
denoted as α, is used to compute the body part scores
Bi = α(Fi), Bi ∈ R(Np+1)×H×W , where Np + 1 = 15
is the number of predicted labels, following the order of
{background, head, torso, left&right upper arms, left&right
fore arms, left&right hands, left&right thighs, left&right
shanks, left&right feet} from 0 to 14. The argmax values of
Bi derive the body part segmentation results Si ∈ RH×W .
And the above ResNet101+FCN structure is stacked for Nv
times to parsing the images of Nv views in parallel.

2) Pose-aware Complementary Learning System. The
2D human pose estimation is adopted as an auxiliary task to
train the human parsing network using both synthetic data
with part labels and real data with pose labels, which makes
the trained model learn human body structure priors.

2.2. Semantic Visual Hull Carving

Using the results of human parsing, we construct a Visual
Hull-based semantic model of human body, which is called

the Part-Aware Visual Hull (PAVH). The construction of
PAVH be divided into three steps:

1) Carving Space Initialization. Firstly, a triangulation-
based method is used to determine the 3D boundary of carv-
ing space based on the 2D bounding boxes derived from the
body part segmentations Si, i = 1, · · · , Nv and the calibrated
camera metrixes Mi. Given a pre-defined voxel size, the ini-
tial voxel grid V init can be obtained, where Φ(vk) = 0 de-
notes the initial value for each vk ∈ V init.

2) Voting-based Volumetric Data Fusion. Secondly, the
body part segmentations Si and scores Bi of each view are
projected into the voxel grid V init. For each voxel vk ∈
V init, the projected values sk,i ∈ Si and bk,i ∈ Bi, where
i = 1, · · · , Nv , are fused by a weighted voting function to
determine the corresponding 3D body part label:

Φ(vk) = f(sk,1, · · · , sk,Nv
; bk,1, · · · , bk,Nv

) (1)

where sk,i are the 2D part labels, as votes, and bk,i are the
corresponding predicted probabilities, as weights. The voting
function f is used to reduce the influence of self-occlusion by
fusing the probabilities of other views, shown in equation (2).

f(sk; bk) = argmax(wk), wk ∈ RNp

wk,j =
∑
sk,i=j

bk,i, j = 1, · · · , Np (2)

where wk,j ∈ wk is the sum of weighted votes for the j-th
body part from all of the Nv views.

3) Non-zero Voxels Combination. Finally, the non-zero
valued voxels are selected to compose the PAVH, denoted as
V part. As shown in Fig. 1, PAVH contains both human sil-
houette and semantic body parts information.



2.3. Hierarchical Human Model Fitting

The goal of this step is to fit the SMPL model to the con-
structed PAVH by minimizing an objective function.

1) The SMPL Model. The SMPL (Skinned Multi-Person
Linear) model [12] is a linear human mesh model. It uses
an artist-created human body mesh with 6890 vertices as the
template T̄ , which is then deformed under the control of shape
parameters, β ∈ R10, pose parameters, θ ∈ R24×3 and global
translation parameters, t ∈ R3 in an additive way, formulating
the model M(β, θ, t):

M(β, θ, t) = W ((T̄ +BS(β) +BP (θ)), J(β), θ, t,W) (3)

where W (·) is a linear blend skinning function and other de-
tails refer to [12]. We divide the vertices of the SMPL mesh
into 14 parts, denoted as V SMPL

j , j = 1, · · · , 14, correspond-
ing to the 14 body parts defined in section 2.1, to make it eas-
ier to be fitted to the PAVH data.

The human model fitting problem is thus equivalent to the
estimation of β, θ and t, solved by minimizing an objective
function. To form the objective function, we extract 14 key-
points and construct 14 volumes from the PAVH data.

2) PAVH keypoints Extraction. For each voxel vk in
V part, if the value of its adjacent voxels vk,adj is not the same
as vk, it is marked as a key voxel. And the corresponding key
value is denoted as an unordered tuple, (vk, vk,adj). The aver-
age position of each set of key voxels is taken as the location
of PAVH keypoints, Ji, i = 1, · · · , 14, as shown in table 1.

Table 1. Relationships between Ji and body parts.

key values keypoints key values keypoints

(1,2) J1: neck (2,9,10) J2: pelvis
(2,3) J3: L shoulder (2,4) J4: R shoulder
(3,5) J5: L elbow (4,6) J6: R elbow
(5,7) J7: L wrist (6,8) J8: R wrist
(2,9) J9: L hip (2,10) J10: R hip

(9,11) J11: L knee (10,12) J12: R knee
(11,13) J13: L ankle (12,14) J14: R ankle

3) PAVH Volume Construction. Inspired by the TSDF
(Truncated Signed Distance Field) volume used in [19], we
construct the PAVH volumes, V PAVHj , j = 1, · · · , 14, for 14
body parts, to represent the distance between any voxel out-
side the j-th body part and the closest inside voxel. For each
voxel vj,k ∈ V PAVHj and vi ∈ V part, the value of vj,k is
determined by equation (4).

Φj(vj,k) =

{
min

Φ(vi)=j
{d(vj,k, vi)}, if vj,k /∈ V part

0, otherwise
(4)

where d(·) calculates the euclidean distance between two vox-
els. The PAVH volume is visualized in Fig. 2.

Fig. 2. 2D visualization of the 3D PAVH volume, V PAVHj

where j = 2, along X,Y and Z coordinates.

4) Objective Function. The objective function is the sum
of four error terms, including two data terms of PAVH key-
point and volume, two prior terms of SMPL shape and pose:

E(β, θ,t) = Ekeypoint + λ1Evolume

+ λ2EshapePrior + λ3EposePrior
(5)

PAVH Keypoint Term: We select 14 out of 24 joints of the
SMPL model to fit the corresponding 14 PAVH keypoints as
shown in table 1.

Ejoint(β, θ, t) =

14∑
i=1

||Ji −Rθ(J(β)i)||2 (6)

where Rθ(J(β)i) is the position of the i-th selected SMPL
joint, obtained by global rigid transformation.

PAVH Volume Term: Our proposed PAVH constrains each
body part in a limited space. And the constraint power is
represented in PAVH volumes. So the pre-computed PAVH
volumes are used here to punish the misplaced SMPL vertices
of each body part.

Evolume(β, θ, t) =

14∑
j=1

Nj∑
i=1

Φj(vj,i) (7)

where vj,i ∈ V SMPL
j representing the i-th vertice of j-th

body part of the SMPL mesh, and Σ14
j=1Nj = 6890.

SMPL Shape and Pose Prior Terms: These two terms are
the same as the prior terms used in SMPLify [20].

5) Four-Stage Hierarchical Optimization. Following
the rule of kinematic chain of human body, we minimize the
objective function using the SLSQP optimizer in four stages,
hierarchically optimizing the shape and pose of the SMPL
model. The design of each stage is shown below:

Stage 1: Global rotation and transformation.
Stage 2: Optimization of the pose of upper limbs, basic

body shape, and global transformation.
Stage 3: Optimization of the pose of upper and lower

limbs, basic body shape, and global transformation.
Stage 4: Refined optimization with consideration of all

shape, pose and transformation parameters.
The kinematic tree of human body is considered in the

four-stage optimization method, which is proved to be effec-
tive in our experiments.



3. EXPERIMENTS

3.1. Experimental settings

In our experiments, the multi-view human parsing network is
based on the pre-trained CDCL model [16]. We make a trade-
off between accuracy and efficency by setting the voxel size of
the visual hull to 0.02m to construct a coarse initialization. As
for model fitting step, the number of data terms and variables
used in each stage of the hierarchical optimization process is
shown in table 2. And the super parameters of the objective
function Eq.5 follows the setting of [20]. Our experiment is
carried out on an indoor human dataset [15], the images of
which are captured by an 8-view stereo vision system. Totally
850 frames RGB images with groundtruth mesh are used to
evaluate our framework.

Table 2. Data terms and variables used in each stage.

Stages Keypoints Volumes β θ t

Stage 1 6 2 1 1× 3 3
Stage 2 10 6 2 5× 3 3
Stage 3 14 10 3 9× 3 3
Stage 4 14 14 10 24× 3 3

3.2. Quantitative Analysis

Metric. To quantitatively evaluate our reconstruction result,
we calculate two per-vertex errors, SMPL-GT and SMPL-
VH, using equation (8):

everts =
1

Ni

Ni∑
i

min
1<j<Nj

||vsmpl,i − vref,j ||2 (8)

where vsmpl,i denotes the i-th of the Ni vertices of the fitted
SMPL mesh, and vref,j denotes the j-th of the Nj vertices
of the other reference mesh, which is the groundtruth (GT)
mesh provided by the dataset [15] and PAVH mesh obtained
by marching cube algorithm [21].
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Fig. 3. Means and standard deviations of per-vertex errors.

(a) view 1. (b) PAVH. (c) 2-stage. (d) 4-stage. (e) [22]. (f) GT.

Fig. 4. Qualitative comparison. (a) Input image of one view
(cropped). (b) the Part-Aware Visual Hull (PAVH). (c) the fit-
ted SMPL model of two-stage method (ablation study). (d)
the fitted SMPL model of four-stage method (final output).
(e) the result of a multi-view SMPL fitting method based
on smplify-x [22]. (f) the ground truth mesh colored by the
PAVH volumes.

As shown in Fig. 3, the means and standard deviations
of SMPL-GT and SMPL-VH reduce to a reasonable range in
stage 4, illuminating the success of the SMPL fitting process.

3.3. Qualitative Comparison

To test the effectiveness of our hierarchical optimization
method, we make an ablation study, which is a two-stage
optimization method consisting only stage 1 and 4 in table
2, but with the same max iteration number as the four-stage
method to make a fair comparison. As shown in Fig. 4 (c)
and (d), the four-stage method converges to a better result
especially for complex human poses. To compare our human
parsing-based method to the 2D human pose-based method,
we test the smplify-x [22] based multi-view SMPL fitting
method on the same dataset, where the 2D human pose is
estimated by [16]. As shown in Fig. 4 (d) and (e), our method
outperforms [22] in both lower limbs and head orientation
estimation. Because human parsing captures more detailed
information than 2D human pose.

4. CONCLUSION

As far as we know, our framework is the first attempt to uti-
lize human parsing in multi-view 3D human reconstruction.
We extend the concept of visual hull to a part-aware semantic
model, which provides a reliable initialization of 3D human
reconstruction. A hierarchical optimization method is pro-
posed to estimate the shape and pose of the SMPL model.
Without any 3D training data, our framework reserves good
generalizability in real indoor scenes.
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